ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2303.06109
21
4

On the Fusion Strategies for Federated Decision Making

10 March 2023
Mert Kayaalp
Yunus Inan
V. Koivunen
E. Telatar
Ali H. Sayed
    FedML
ArXivPDFHTML
Abstract

We consider the problem of information aggregation in federated decision making, where a group of agents collaborate to infer the underlying state of nature without sharing their private data with the central processor or each other. We analyze the non-Bayesian social learning strategy in which agents incorporate their individual observations into their opinions (i.e., soft-decisions) with Bayes rule, and the central processor aggregates these opinions by arithmetic or geometric averaging. Building on our previous work, we establish that both pooling strategies result in asymptotic normality characterization of the system, which, for instance, can be utilized to derive approximate expressions for the error probability. We verify the theoretical findings with simulations and compare both strategies.

View on arXiv
Comments on this paper