ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2303.05657
61
74

Tag2Text: Guiding Vision-Language Model via Image Tagging

10 March 2023
Xinyu Huang
Youcai Zhang
Jinyu Ma
Weiwei Tian
Rui Feng
Yuejie Zhang
Yaqian Li
Yandong Guo
Lei Zhang
    CLIP
    MLLM
    VLM
    3DV
ArXivPDFHTML
Abstract

This paper presents Tag2Text, a vision language pre-training (VLP) framework, which introduces image tagging into vision-language models to guide the learning of visual-linguistic features. In contrast to prior works which utilize object tags either manually labeled or automatically detected with an off-the-shelf detector with limited performance, our approach explicitly learns an image tagger using tags parsed from image-paired text and thus provides a strong semantic guidance to vision-language models. In this way, Tag2Text can utilize large-scale annotation-free image tags in accordance with image-text pairs, and provides more diverse tag categories beyond objects. As a result, Tag2Text demonstrates the ability of a foundational image tagging model, with superior zero-shot performance even comparable to fully supervised models. Moreover, by leveraging the tagging guidance, Tag2Text effectively enhances the performance of vision-language models on both generation-based and alignment-based tasks. Across a wide range of downstream benchmarks, Tag2Text achieves state-of-the-art results with similar model sizes and data scales, demonstrating the efficacy of the proposed tagging guidance. Code, demo and pre-trained models are available at https://github.com/xinyu1205/recognize-anything.

View on arXiv
Comments on this paper