ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2303.05082
35
3

Dynamic Multi-View Fusion Mechanism For Chinese Relation Extraction

9 March 2023
Jing Yang
Bin Ji
Shasha Li
Jun Ma
Long Peng
Jie Yu
ArXivPDFHTML
Abstract

Recently, many studies incorporate external knowledge into character-level feature based models to improve the performance of Chinese relation extraction. However, these methods tend to ignore the internal information of the Chinese character and cannot filter out the noisy information of external knowledge. To address these issues, we propose a mixture-of-view-experts framework (MoVE) to dynamically learn multi-view features for Chinese relation extraction. With both the internal and external knowledge of Chinese characters, our framework can better capture the semantic information of Chinese characters. To demonstrate the effectiveness of the proposed framework, we conduct extensive experiments on three real-world datasets in distinct domains. Experimental results show consistent and significant superiority and robustness of our proposed framework. Our code and dataset will be released at: https://gitee.com/tmg-nudt/multi-view-of-expert-for-chineserelation-extraction

View on arXiv
Comments on this paper