ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2303.03476
24
28

iBall: Augmenting Basketball Videos with Gaze-moderated Embedded Visualizations

6 March 2023
Zhutian Chen
Qisen Yang
Jiarui Shan
Tica Lin
Johanna Beyer
Haijun Xia
Hanspeter Pfister
ArXivPDFHTML
Abstract

We present iBall, a basketball video-watching system that leverages gaze-moderated embedded visualizations to facilitate game understanding and engagement of casual fans. Video broadcasting and online video platforms make watching basketball games increasingly accessible. Yet, for new or casual fans, watching basketball videos is often confusing due to their limited basketball knowledge and the lack of accessible, on-demand information to resolve their confusion. To assist casual fans in watching basketball videos, we compared the game-watching behaviors of casual and die-hard fans in a formative study and developed iBall based on the fndings. iBall embeds visualizations into basketball videos using a computer vision pipeline, and automatically adapts the visualizations based on the game context and users' gaze, helping casual fans appreciate basketball games without being overwhelmed. We confrmed the usefulness, usability, and engagement of iBall in a study with 16 casual fans, and further collected feedback from 8 die-hard fans.

View on arXiv
Comments on this paper