ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2303.03293
29
0

On Hierarchical Multi-Resolution Graph Generative Models

6 March 2023
Mahdi Karami
Jun Luo
    AI4CE
ArXivPDFHTML
Abstract

In real world domains, most graphs naturally exhibit a hierarchical structure. However, data-driven graph generation is yet to effectively capture such structures. To address this, we propose a novel approach that recursively generates community structures at multiple resolutions, with the generated structures conforming to training data distribution at each level of the hierarchy. The graphs generation is designed as a sequence of coarse-to-fine generative models allowing for parallel generation of all sub-structures, resulting in a high degree of scalability. Our method demonstrates generative performance improvement on multiple graph datasets.

View on arXiv
Comments on this paper