ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2303.02883
16
3

Very fast, approximate counterfactual explanations for decision forests

6 March 2023
Miguel Á. Carreira-Perpiñán
Suryabhan Singh Hada
ArXivPDFHTML
Abstract

We consider finding a counterfactual explanation for a classification or regression forest, such as a random forest. This requires solving an optimization problem to find the closest input instance to a given instance for which the forest outputs a desired value. Finding an exact solution has a cost that is exponential on the number of leaves in the forest. We propose a simple but very effective approach: we constrain the optimization to only those input space regions defined by the forest that are populated by actual data points. The problem reduces to a form of nearest-neighbor search using a certain distance on a certain dataset. This has two advantages: first, the solution can be found very quickly, scaling to large forests and high-dimensional data, and enabling interactive use. Second, the solution found is more likely to be realistic in that it is guided towards high-density areas of input space.

View on arXiv
Comments on this paper