ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2303.01917
29
10

Pyramid Pixel Context Adaption Network for Medical Image Classification with Supervised Contrastive Learning

3 March 2023
Xiaoqin Zhang
Zunjie Xiao
Xiao Wu
Jiansheng Fang
Junyong Shen
Yan Hu
Jiang-Dong Liu
ArXivPDFHTML
Abstract

Spatial attention mechanism has been widely incorporated into deep neural networks (DNNs), significantly lifting the performance in computer vision tasks via long-range dependency modeling. However, it may perform poorly in medical image analysis. Unfortunately, existing efforts are often unaware that long-range dependency modeling has limitations in highlighting subtle lesion regions. To overcome this limitation, we propose a practical yet lightweight architectural unit, Pyramid Pixel Context Adaption (PPCA) module, which exploits multi-scale pixel context information to recalibrate pixel position in a pixel-independent manner dynamically. PPCA first applies a well-designed cross-channel pyramid pooling to aggregate multi-scale pixel context information, then eliminates the inconsistency among them by the well-designed pixel normalization, and finally estimates per pixel attention weight via a pixel context integration. By embedding PPCA into a DNN with negligible overhead, the PPCANet is developed for medical image classification. In addition, we introduce supervised contrastive learning to enhance feature representation by exploiting the potential of label information via supervised contrastive loss. The extensive experiments on six medical image datasets show that PPCANet outperforms state-of-the-art attention-based networks and recent deep neural networks. We also provide visual analysis and ablation study to explain the behavior of PPCANet in the decision-making process.

View on arXiv
Comments on this paper