35
3

Tile Networks: Learning Optimal Geometric Layout for Whole-page Recommendation

Abstract

Finding optimal configurations in a geometric space is a key challenge in many technological disciplines. Current approaches either rely heavily on human domain expertise and are difficult to scale. In this paper we show it is possible to solve configuration optimization problems for whole-page recommendation using reinforcement learning. The proposed \textit{Tile Networks} is a neural architecture that optimizes 2D geometric configurations by arranging items on proper positions. Empirical results on real dataset demonstrate its superior performance compared to traditional learning to rank approaches and recent deep models.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.