45
14
v1v2 (latest)

Semantic Attention Flow Fields for Monocular Dynamic Scene Decomposition

Abstract

From video, we reconstruct a neural volume that captures time-varying color, density, scene flow, semantics, and attention information. The semantics and attention let us identify salient foreground objects separately from the background across spacetime. To mitigate low resolution semantic and attention features, we compute pyramids that trade detail with whole-image context. After optimization, we perform a saliency-aware clustering to decompose the scene. To evaluate real-world scenes, we annotate object masks in the NVIDIA Dynamic Scene and DyCheck datasets. We demonstrate that this method can decompose dynamic scenes in an unsupervised way with competitive performance to a supervised method, and that it improves foreground/background segmentation over recent static/dynamic split methods. Project Webpage: https://visual.cs.brown.edu/saff

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.