ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2303.01430
25
12

A Large-Scale Study of Personal Identifiability of Virtual Reality Motion Over Time

2 March 2023
Mark Roman Miller
Eugy Han
C. DeVeaux
Eliot Jones
Ryan Chen
Jeremy N. Bailenson
ArXivPDFHTML
Abstract

In recent years, social virtual reality (VR), sometimes described as the "metaverse," has become widely available. With its potential comes risks, including risks to privacy. To understand these risks, we study the identifiability of participants' motion in VR in a dataset of 232 VR users with eight weekly sessions of about thirty minutes each, totaling 764 hours of social interaction. The sample is unique as we are able to study the effect of user, session, and time independently. We find that the number of sessions recorded greatly increases identifiability, and duration per session increases identifiability as well, but to a lesser degree. We also find that greater delay between training and testing sessions reduces identifiability. Ultimately, understanding the identifiability of VR activities will help designers, security professionals, and consumer advocates make VR safer.

View on arXiv
Comments on this paper