ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2303.00755
18
1

Cloud K-SVD for Image Denoising

1 March 2023
Christian Marius Lillelund
Henrik Bagger Jensen
Christian Fischer Pedersen
ArXivPDFHTML
Abstract

Cloud K-SVD is a dictionary learning algorithm that can train at multiple nodes and hereby produce a mutual dictionary to represent low-dimensional geometric structures in image data. We present a novel application of the algorithm as we use it to recover both noiseless and noisy images from overlapping patches. We implement a node network in Kubernetes using Docker containers to facilitate Cloud K-SVD. Results show that Cloud K-SVD can recover images approximately and remove quantifiable amounts of noise from benchmark gray-scaled images without sacrificing accuracy in recovery; we achieve an SSIM index of 0.88, 0.91 and 0.95 between clean and recovered images for noise levels (μ\muμ = 0, σ2\sigma^{2}σ2 = 0.01, 0.005, 0.001), respectively, which is similar to SOTA in the field. Cloud K-SVD is evidently able to learn a mutual dictionary across multiple nodes and remove AWGN from images. The mutual dictionary can be used to recover a specific image at any of the nodes in the network.

View on arXiv
Comments on this paper