68
21
v1v2v3 (latest)

FaceRNET: a Facial Expression Intensity Estimation Network

Abstract

This paper presents our approach for Facial Expression Intensity Estimation from videos. It includes two components: i) a representation extractor network that extracts various emotion descriptors (valence-arousal, action units and basic expressions) from each videoframe; ii) a RNN that captures temporal information in the data, followed by a mask layer which enables handling varying input video lengths through dynamic routing. This approach has been tested on the Hume-Reaction dataset yielding excellent results.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.