ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2302.14732
56
13
v1v2 (latest)

Constrained Bayesian Optimization for Automatic Underwater Vehicle Hull Design

28 February 2023
Harsh Vardhan
Péter Völgyesi
Will Hedgecock
ArXiv (abs)PDFHTML
Abstract

Automatic underwater vehicle hull Design optimization is a complex engineering process for generating a UUV hull with optimized properties on a given requirement. First, it involves the integration of involved computationally complex engineering simulation tools. Second, it needs integration of a sample efficient optimization framework with the integrated toolchain. To this end, we integrated the CAD tool called FreeCAD with CFD tool openFoam for automatic design evaluation. For optimization, we chose Bayesian optimization (BO), which is a well-known technique developed for optimizing time-consuming expensive engineering simulations and has proven to be very sample efficient in a variety of problems, including hyper-parameter tuning and experimental design. During the optimization process, we can handle infeasible design as constraints integrated into the optimization process. By integrating domain-specific toolchain with AI-based optimization, we executed the automatic design optimization of underwater vehicle hull design. For empirical evaluation, we took two different use cases of real-world underwater vehicle design to validate the execution of our tool.

View on arXiv
Comments on this paper