ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2302.14706
22
2

A Novel Deep Reinforcement Learning-based Approach for Enhancing Spectral Efficiency of IRS-assisted Wireless Systems

24 January 2023
Farimehr Zohari
S. Shahabi
M. Ardebilipour
ArXivPDFHTML
Abstract

This letter investigates an intelligent reflecting surfaces (IRS)-enhanced network from spectral efficiency enhancement point of view for downlink multi-user (MU) multi-input-single-output systems (MISO). In contrast to previous works which mainly focused on alternative optimization methods, we investigate the non-convex joint optimization problem of the active transmit beamforming matrix at the base station together with the passive phase shift matrix at the IRS by utilizing two deep reinforcement learning frameworks, i. e., deep deterministic policy gradient (DDPG) and twin delayed DDPG (TD3). Simulation results reveal that the neural networks in the latter scheme perform generally more satisfactorily in various situations.

View on arXiv
Comments on this paper