ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2302.14420
34
8
v1v2 (latest)

Estimation-of-Distribution Algorithms for Multi-Valued Decision Variables

28 February 2023
Firas Ben Jedidia
Benjamin Doerr
Martin S. Krejca
ArXiv (abs)PDFHTML
Abstract

With apparently all research on estimation-of-distribution algorithms (EDAs) concentrated on pseudo-Boolean optimization and permutation problems, we undertake the first steps towards using EDAs for problems in which the decision variables can take more than two values, but which are not permutation problems. To this aim, we propose a natural way to extend the known univariate EDAs to such variables. Different from a naive reduction to the binary case, it avoids additional constraints. Since understanding genetic drift is crucial for an optimal parameter choice, we extend the known quantitative analysis of genetic drift to EDAs for multi-valued variables. Roughly speaking, when the variables take rrr different values, the time for genetic drift to become significant is rrr times shorter than in the binary case. Consequently, the update strength of the probabilistic model has to be chosen rrr times lower now. To investigate how desired model updates take place in this framework, we undertake a mathematical runtime analysis on the rrr-valued LeadingOnes problem. We prove that with the right parameters, the multi-valued UMDA solves this problem efficiently in O(rlog⁡(r)2n2log⁡(n))O(r\log(r)^2 n^2 \log(n))O(rlog(r)2n2log(n)) function evaluations. Overall, our work shows that EDAs can be adjusted to multi-valued problems, and it gives advice on how to set the main parameters.

View on arXiv
Comments on this paper