ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2302.14034
23
2

Asymptotic theory for quadratic variation of harmonizable fractional stable processes

27 February 2023
A. Basse-O’Connor
M. Podolskij
ArXivPDFHTML
Abstract

In this paper we study the asymptotic theory for quadratic variation of a harmonizable fractional \al\al\al-stable process. We show a law of large numbers with a non-ergodic limit and obtain weak convergence towards a L\évy-driven Rosenblatt random variable when the Hurst parameter satisfies H∈(1/2,1)H\in (1/2,1)H∈(1/2,1) and \al(1−H)<1/2\al(1-H)<1/2\al(1−H)<1/2. This result complements the asymptotic theory for fractional stable processes investigated in e.g. \cite{BHP19,BLP17,BP17,BPT20,LP18,MOP20}.

View on arXiv
Comments on this paper