ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2302.13855
13
2

Data Augmentation with GAN increases the Performance of Arrhythmia Classification for an Unbalanced Dataset

24 February 2023
Okan Düzyel
M. Kuntalp
ArXivPDFHTML
Abstract

Due to the data shortage problem, which is one of the major problems in the field of machine learning, the accuracy level of many applications remains well below the expected. It prevents researchers from producing new artificial intelligence-based systems with the available data. This problem can be solved by generating new synthetic data with augmentation methods. In this study, new ECG signals are produced using MIT-BIH Arrhythmia Database by using Generative Adversarial Neural Networks (GAN), which is a modern data augmentation method. These generated data are used for training a machine learning system and real ECG data for testing it. The obtained results show that this way the performance of the machine learning system is increased.

View on arXiv
Comments on this paper