20
20

The (ab)use of Open Source Code to Train Large Language Models

Abstract

In recent years, Large Language Models (LLMs) have gained significant popularity due to their ability to generate human-like text and their potential applications in various fields, such as Software Engineering. LLMs for Code are commonly trained on large unsanitized corpora of source code scraped from the Internet. The content of these datasets is memorized and emitted by the models, often in a verbatim manner. In this work, we will discuss the security, privacy, and licensing implications of memorization. We argue why the use of copyleft code to train LLMs is a legal and ethical dilemma. Finally, we provide four actionable recommendations to address this issue.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.