ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2302.13598
19
15

Spatial-Frequency Attention for Image Denoising

27 February 2023
Shi Guo
Hongwei Yong
Xindong Zhang
Jianqi Ma
Lei Zhang
    ViT
    AI4TS
ArXivPDFHTML
Abstract

The recently developed transformer networks have achieved impressive performance in image denoising by exploiting the self-attention (SA) in images. However, the existing methods mostly use a relatively small window to compute SA due to the quadratic complexity of it, which limits the model's ability to model long-term image information. In this paper, we propose the spatial-frequency attention network (SFANet) to enhance the network's ability in exploiting long-range dependency. For spatial attention module (SAM), we adopt dilated SA to model long-range dependency. In the frequency attention module (FAM), we exploit more global information by using Fast Fourier Transform (FFT) by designing a window-based frequency channel attention (WFCA) block to effectively model deep frequency features and their dependencies. To make our module applicable to images of different sizes and keep the model consistency between training and inference, we apply window-based FFT with a set of fixed window sizes. In addition, channel attention is computed on both real and imaginary parts of the Fourier spectrum, which further improves restoration performance. The proposed WFCA block can effectively model image long-range dependency with acceptable complexity. Experiments on multiple denoising benchmarks demonstrate the leading performance of SFANet network.

View on arXiv
Comments on this paper