ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2302.13210
19
3

AutoML for neuromorphic computing and application-driven co-design: asynchronous, massively parallel optimization of spiking architectures

26 February 2023
A. Yanguas-Gil
Sandeep Madireddy
ArXivPDFHTML
Abstract

In this work we have extended AutoML inspired approaches to the exploration and optimization of neuromorphic architectures. Through the integration of a parallel asynchronous model-based search approach with a simulation framework to simulate spiking architectures, we are able to efficiently explore the configuration space of neuromorphic architectures and identify the subset of conditions leading to the highest performance in a targeted application. We have demonstrated this approach on an exemplar case of real time, on-chip learning application. Our results indicate that we can effectively use optimization approaches to optimize complex architectures, therefore providing a viable pathway towards application-driven codesign.

View on arXiv
Comments on this paper