70
7

DisCO: Portrait Distortion Correction with Perspective-Aware 3D GANs

Abstract

Close-up facial images captured at short distances often suffer from perspective distortion, resulting in exaggerated facial features and unnatural/unattractive appearances. We propose a simple yet effective method for correcting perspective distortions in a single close-up face. We first perform GAN inversion using a perspective-distorted input facial image by jointly optimizing the camera intrinsic/extrinsic parameters and face latent code. To address the ambiguity of joint optimization, we develop starting from a short distance, optimization scheduling, reparametrizations, and geometric regularization. Re-rendering the portrait at a proper focal length and camera distance effectively corrects perspective distortions and produces more natural-looking results. Our experiments show that our method compares favorably against previous approaches qualitatively and quantitatively. We showcase numerous examples validating the applicability of our method on in-the-wild portrait photos. We will release our code and the evaluation protocol to facilitate future work.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.