ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2302.11431
14
11

A Note on "Towards Efficient Data Valuation Based on the Shapley Value''

22 February 2023
Jiachen T. Wang
R. Jia
    TDI
ArXivPDFHTML
Abstract

The Shapley value (SV) has emerged as a promising method for data valuation. However, computing or estimating the SV is often computationally expensive. To overcome this challenge, Jia et al. (2019) propose an advanced SV estimation algorithm called ``Group Testing-based SV estimator'' which achieves favorable asymptotic sample complexity. In this technical note, we present several improvements in the analysis and design choices of this SV estimator. Moreover, we point out that the Group Testing-based SV estimator does not fully reuse the collected samples. Our analysis and insights contribute to a better understanding of the challenges in developing efficient SV estimation algorithms for data valuation.

View on arXiv
Comments on this paper