ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2302.10487
16
1

Classification with Trust: A Supervised Approach based on Sequential Ellipsoidal Partitioning

21 February 2023
Ranjani Niranjan
Sachit Rao
ArXivPDFHTML
Abstract

Standard metrics of performance of classifiers, such as accuracy and sensitivity, do not reveal the trust or confidence in the predicted labels of data. While other metrics such as the computed probability of a label or the signed distance from a hyperplane can act as a trust measure, these are subjected to heuristic thresholds. This paper presents a convex optimization-based supervised classifier that sequentially partitions a dataset into several ellipsoids, where each ellipsoid contains nearly all points of the same label. By stating classification rules based on this partitioning, Bayes' formula is then applied to calculate a trust score to a label assigned to a test datapoint determined from these rules. The proposed Sequential Ellipsoidal Partitioning Classifier (SEP-C) exposes dataset irregularities, such as degree of overlap, without requiring a separate exploratory data analysis. The rules of classification, which are free of hyperparameters, are also not affected by class-imbalance, the underlying data distribution, or number of features. SEP-C does not require the use of non-linear kernels when the dataset is not linearly separable. The performance, and comparison with other methods, of SEP-C is demonstrated on the XOR-problem, circle dataset, and other open-source datasets.

View on arXiv
Comments on this paper