ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2302.09908
15
17

A Sidecar Separator Can Convert a Single-Talker Speech Recognition System to a Multi-Talker One

20 February 2023
Lingwei Meng
Jiawen Kang
Mingyu Cui
Yuejiao Wang
Xixin Wu
Helen M. Meng
ArXivPDFHTML
Abstract

Although automatic speech recognition (ASR) can perform well in common non-overlapping environments, sustaining performance in multi-talker overlapping speech recognition remains challenging. Recent research revealed that ASR model's encoder captures different levels of information with different layers -- the lower layers tend to have more acoustic information, and the upper layers more linguistic. This inspires us to develop a Sidecar separator to empower a well-trained ASR model for multi-talker scenarios by separating the mixed speech embedding between two suitable layers. We experimented with a wav2vec 2.0-based ASR model with a Sidecar mounted. By freezing the parameters of the original model and training only the Sidecar (8.7 M, 8.4% of all parameters), the proposed approach outperforms the previous state-of-the-art by a large margin for the 2-speaker mixed LibriMix dataset, reaching a word error rate (WER) of 10.36%; and obtains comparable results (7.56%) for LibriSpeechMix dataset when limited training.

View on arXiv
Comments on this paper