ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2302.09252
24
8

Deep AHS: A Deep Learning Approach to Acoustic Howling Suppression

18 February 2023
Huan Zhang
Meng Yu
Dong Yu
ArXivPDFHTML
Abstract

In this paper, we formulate acoustic howling suppression (AHS) as a supervised learning problem and propose a deep learning approach, called Deep AHS, to address it. Deep AHS is trained in a teacher forcing way which converts the recurrent howling suppression process into an instantaneous speech separation process to simplify the problem and accelerate the model training. The proposed method utilizes properly designed features and trains an attention based recurrent neural network (RNN) to extract the target signal from the microphone recording, thus attenuating the playback signal that may lead to howling. Different training strategies are investigated and a streaming inference method implemented in a recurrent mode used to evaluate the performance of the proposed method for real-time howling suppression. Deep AHS avoids howling detection and intrinsically prohibits howling from happening, allowing for more flexibility in the design of audio systems. Experimental results show the effectiveness of the proposed method for howling suppression under different scenarios.

View on arXiv
Comments on this paper