37
10

Self-Supervised Representation Learning from Temporal Ordering of Automated Driving Sequences

Abstract

Self-supervised feature learning enables perception systems to benefit from the vast raw data recorded by vehicle fleets worldwide. While video-level self-supervised learning approaches have shown strong generalizability on classification tasks, the potential to learn dense representations from sequential data has been relatively unexplored. In this work, we propose TempO, a temporal ordering pretext task for pre-training region-level feature representations for perception tasks. We embed each frame by an unordered set of proposal feature vectors, a representation that is natural for object detection or tracking systems, and formulate the sequential ordering by predicting frame transition probabilities in a transformer-based multi-frame architecture whose complexity scales less than quadratic with respect to the sequence length. Extensive evaluations on the BDD100K, nuImages, and MOT17 datasets show that our TempO pre-training approach outperforms single-frame self-supervised learning methods as well as supervised transfer learning initialization strategies, achieving an improvement of +0.7% in mAP for object detection and +2.0% in the HOTA score for multi-object tracking.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.