ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2302.08158
18
0

Counterfactual Fair Opportunity: Measuring Decision Model Fairness with Counterfactual Reasoning

16 February 2023
Giandomenico Cornacchia
Vito Walter Anelli
Fedelucio Narducci
Azzurra Ragone
E. Sciascio
    FaML
ArXivPDFHTML
Abstract

The increasing application of Artificial Intelligence and Machine Learning models poses potential risks of unfair behavior and, in light of recent regulations, has attracted the attention of the research community. Several researchers focused on seeking new fairness definitions or developing approaches to identify biased predictions. However, none try to exploit the counterfactual space to this aim. In that direction, the methodology proposed in this work aims to unveil unfair model behaviors using counterfactual reasoning in the case of fairness under unawareness setting. A counterfactual version of equal opportunity named counterfactual fair opportunity is defined and two novel metrics that analyze the sensitive information of counterfactual samples are introduced. Experimental results on three different datasets show the efficacy of our methodologies and our metrics, disclosing the unfair behavior of classic machine learning and debiasing models.

View on arXiv
Comments on this paper