ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2302.07751
11
5

Fully Energy-Efficient Randomized Backoff: Slow Feedback Loops Yield Fast Contention Resolution

15 February 2023
M. A. Bender
Jeremy T. Fineman
Seth Gilbert
John Kuszmaul
Maxwell Young
ArXivPDFHTML
Abstract

Contention resolution addresses the problem of coordinating access to a shared channel. Time proceeds in slots, and a packet transmission can be made in any slot. A packet is successfully sent if no other packet is also transmitted during that slot. If two or more packets are sent in the same slot, then none of these transmissions succeed. Listening during a slot gives ternary feedback, indicating if that slot had (0) silence, (1) a successful transmission, or (2+) noise. No other feedback is available. Packets are (adversarially) injected into the system over time. A packet departs the system once it is successful. The goal is to send all packets while optimizing throughput, which is roughly the fraction of successful slots. Most prior algorithms with constant throughput require a short feedback loop, in the sense that a packet's sending probability in slot t+1 is fully determined by its internal state at slot t and the channel feedback at slot t. An open question is whether these short feedback loops are necessary; that is, how often must listening and updating occur in order to achieve constant throughput? This question addresses energy efficiency, since both listening and sending consume significant energy. The channel can also suffer adversarial noise ("jamming"), which causes any listener to hear noise, even when no packets are sent. How does jamming affect our goal of long feedback loops/energy efficiency? Connecting these questions, we ask: what does a contention-resolution algorithm have to sacrifice to reduce channel accesses? Must we give up on constant throughput or robustness to noise? Here, we show that we need not concede anything. Suppose there are N packets and J jammed slots, where the input is determined by an adaptive adversary. We give an algorithm that, with high probability in N+J, has constant throughput and polylog(N+J) channel accesses per packet.

View on arXiv
Comments on this paper