ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2302.05007
11
8

Scalability Bottlenecks in Multi-Agent Reinforcement Learning Systems

10 February 2023
Kailash Gogineni
Peng Wei
Tian-Shing Lan
Guru Venkataramani
ArXivPDFHTML
Abstract

Multi-Agent Reinforcement Learning (MARL) is a promising area of research that can model and control multiple, autonomous decision-making agents. During online training, MARL algorithms involve performance-intensive computations such as exploration and exploitation phases originating from large observation-action space belonging to multiple agents. In this article, we seek to characterize the scalability bottlenecks in several popular classes of MARL algorithms during their training phases. Our experimental results reveal new insights into the key modules of MARL algorithms that limit the scalability, and outline potential strategies that may help address these performance issues.

View on arXiv
Comments on this paper