13
3

Zero-Knowledge Zero-Shot Learning for Novel Visual Category Discovery

Abstract

Generalized Zero-Shot Learning (GZSL) and Open-Set Recognition (OSR) are two mainstream settings that greatly extend conventional visual object recognition. However, the limitations of their problem settings are not negligible. The novel categories in GZSL require pre-defined semantic labels, making the problem setting less realistic; the oversimplified unknown class in OSR fails to explore the innate fine-grained and mixed structures of novel categories. In light of this, we are motivated to consider a new problem setting named Zero-Knowledge Zero-Shot Learning (ZK-ZSL) that assumes no prior knowledge of novel classes and aims to classify seen and unseen samples and recover semantic attributes of the fine-grained novel categories for further interpretation. To achieve this, we propose a novel framework that recovers the clustering structures of both seen and unseen categories where the seen class structures are guided by source labels. In addition, a structural alignment loss is designed to aid the semantic learning of unseen categories with their recovered structures. Experimental results demonstrate our method's superior performance in classification and semantic recovery on four benchmark datasets.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.