ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2302.03850
11
2

Tight Concentration Inequality for Sub-Weibull Random Variables with Generalized Bernstien Orlicz norm

8 February 2023
Heejong Bong
Arun K. Kuchibhotla
ArXivPDFHTML
Abstract

Recent development in high-dimensional statistical inference has necessitated concentration inequalities for a broader range of random variables. We focus on sub-Weibull random variables, which extend sub-Gaussian or sub-exponential random variables to allow heavy-tailed distributions. This paper presents concentration inequalities for independent sub-Weibull random variables with finite Generalized Bernstein-Orlicz norms, providing generalized Bernstein's inequalities and Rosenthal-type moment bounds. The tightness of the proposed bounds is shown through lower bounds of the concentration inequalities obtained via the Paley-Zygmund inequality. The results are applied to a graphical model inference problem, improving previous sample complexity bounds.

View on arXiv
Comments on this paper