ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2302.02687
16
3

On Manipulating Weight Predictions in Signed Weighted Networks

6 February 2023
Tomasz Lizurej
Tomasz P. Michalak
Stefan Dziembowski
    AAML
ArXivPDFHTML
Abstract

Adversarial social network analysis studies how graphs can be rewired or otherwise manipulated to evade social network analysis tools. While there is ample literature on manipulating simple networks, more sophisticated network types are much less understood in this respect. In this paper, we focus on the problem of evading FGA -- an edge weight prediction method for signed weighted networks by Kumar et al.. Among others, this method can be used for trust prediction in reputation systems. We study the theoretical underpinnings of FGA and its computational properties in terms of manipulability. Our positive finding is that, unlike many other tools, this measure is not only difficult to manipulate optimally, but also it can be difficult to manipulate in practice.

View on arXiv
Comments on this paper