ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2302.00836
30
3

Improving Rare Words Recognition through Homophone Extension and Unified Writing for Low-resource Cantonese Speech Recognition

2 February 2023
Ho-Lam Chung
Junan Li
Pengfei Liu1
Wai-Kim Leung
Xixin Wu
Helen Meng
ArXivPDFHTML
Abstract

Homophone characters are common in tonal syllable-based languages, such as Mandarin and Cantonese. The data-intensive end-to-end Automatic Speech Recognition (ASR) systems are more likely to mis-recognize homophone characters and rare words under low-resource settings. For the problem of lowresource Cantonese speech recognition, this paper presents a novel homophone extension method to integrate human knowledge of the homophone lexicon into the beam search decoding process with language model re-scoring. Besides, we propose an automatic unified writing method to merge the variants of Cantonese characters and standardize speech annotation guidelines, which enables more efficient utilization of labeled utterances by providing more samples for the merged characters. We empirically show that both homophone extension and unified writing improve the recognition performance significantly on both in-domain and out-of-domain test sets, with an absolute Character Error Rate (CER) decrease of around 5% and 18%.

View on arXiv
Comments on this paper