ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2302.00235
16
0

Minimizing Change-Point Estimation Error

1 February 2023
H. Chan
ArXivPDFHTML
Abstract

In this paper we consider change-points in multiple sequences with the objective of minimizing the estimation error of a sequence by making use of information from other sequences. This is in contrast to recent interest on change-points in multiple sequences where the focus is on detection of common change-points. We start with the canonical case of a single sequence with constant change-point intensities. We consider two measures of a change-point algorithm. The first is the probability of estimating the change-point with no error. The second is the expected distance between the true and estimated change-points. We provide a theoretical upper bound for the no error probability, and a lower bound for the expected distance, that must be satisfied by all algorithms. We propose a scan-CUSUM algorithm that achieves the no error upper bound and come close to the distance lower bound. We next consider the case of non-constant intensities and establish sharp conditions under which estimation error can go to zero. We propose an extension of the scan-CUSUM algorithm for a non-constant intensity function, and show that it achieves asymptotically zero error at the boundary of the zero-error regime. We illustrate an application of the scan-CUSUM algorithm on multiple sequences sharing an unknown, non-constant intensity function. We estimate the intensity function from the change-point profile likelihoods of all sequences and apply scan-CUSUM on the estimated intensity function.

View on arXiv
Comments on this paper