Adapting Neural Link Predictors for Complex Query Answering

Answering complex queries on incomplete knowledge graphs is a challenging task where a model needs to answer complex logical queries in the presence of missing knowledge. Recently, Arakelyan et al. (2021); Minervini et al. (2022) showed that neural link predictors could also be used for answering complex queries: their Continuous Query Decomposition (CQD) method works by decomposing complex queries into atomic sub-queries, answers them using neural link predictors and aggregates their scores via t-norms for ranking the answers to each complex query. However, CQD does not handle negations and only uses the training signal from atomic training queries: neural link prediction scores are not calibrated to interact together via fuzzy logic t-norms during complex query answering. In this work, we propose to address this problem by training a parameter-efficient score adaptation model to re-calibrate neural link prediction scores: this new component is trained on complex queries by back-propagating through the complex query-answering process. Our method, CQD, produces significantly more accurate results than current state-of-the-art methods, improving from to Mean Reciprocal Rank values averaged across all datasets and query types while using of the available training query types. We further show that CQD is data-efficient, achieving competitive results with only of the training data, and robust in out-of-domain evaluations.
View on arXiv