ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2301.10923
54
10
v1v2 (latest)

Efficient Trust Region-Based Safe Reinforcement Learning with Low-Bias Distributional Actor-Critic

26 January 2023
Dohyeong Kim
Kyungjae Lee
Songhwai Oh
ArXiv (abs)PDFHTMLGithub (18★)
Abstract

To apply reinforcement learning (RL) to real-world applications, agents are required to adhere to the safety guidelines of their respective domains. Safe RL can effectively handle the guidelines by converting them into constraints of the RL problem. In this paper, we develop a safe distributional RL method based on the trust region method, which can satisfy constraints consistently. However, policies may not meet the safety guidelines due to the estimation bias of distributional critics, and importance sampling required for the trust region method can hinder performance due to its significant variance. Hence, we enhance safety performance through the following approaches. First, we train distributional critics to have low estimation biases using proposed target distributions where bias-variance can be traded off. Second, we propose novel surrogates for the trust region method expressed with Q-functions using the reparameterization trick. Additionally, depending on initial policy settings, there can be no policy satisfying constraints within a trust region. To handle this infeasible issue, we propose a gradient integration method which guarantees to find a policy satisfying all constraints from an unsafe initial policy. From extensive experiments, the proposed method with risk-averse constraints shows minimal constraint violations while achieving high returns compared to existing safe RL methods.

View on arXiv
Comments on this paper