ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2301.10319
17
6

Designing Data: Proactive Data Collection and Iteration for Machine Learning

24 January 2023
Aspen K. Hopkins
Fred Hohman
Luca Zappella
Xavier Suau Cuadros
Dominik Moritz
ArXivPDFHTML
Abstract

Lack of diversity in data collection has caused significant failures in machine learning (ML) applications. While ML developers perform post-collection interventions, these are time intensive and rarely comprehensive. Thus, new methods to track & manage data collection, iteration, and model training are necessary for evaluating whether datasets reflect real world variability. We present designing data, an iterative approach to data collection connecting HCI concepts with ML techniques. Our process includes (1) Pre-Collection Planning, to reflexively prompt and document expected data distributions; (2) Collection Monitoring, to systematically encourage sampling diversity; and (3) Data Familiarity, to identify samples that are unfamiliar to a model using density estimation. We apply designing data to a data collection and modeling task. We find models trained on ''designed'' datasets generalize better across intersectional groups than those trained on similarly sized but less targeted datasets, and that data familiarity is effective for debugging datasets.

View on arXiv
Comments on this paper