ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2301.10052
54
1

Event Detection in Football using Graph Convolutional Networks

24 January 2023
A. Rana
    GNN
ArXiv (abs)PDFHTML
Abstract

The massive growth of data collection in sports has opened numerous avenues for professional teams and media houses to gain insights from this data. The data collected includes per frame player and ball trajectories, and event annotations such as passes, fouls, cards, goals, etc. Graph Convolutional Networks (GCNs) have recently been employed to process this highly unstructured tracking data which can be otherwise difficult to model because of lack of clarity on how to order players in a sequence and how to handle missing objects of interest. In this thesis, we focus on the goal of automatic event detection from football videos. We show how to model the players and the ball in each frame of the video sequence as a graph, and present the results for graph convolutional layers and pooling methods that can be used to model the temporal context present around each action.

View on arXiv
Comments on this paper