ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2301.09869
34
10

Image Super-Resolution using Efficient Striped Window Transformer

24 January 2023
Jinpeng Shi
Hui Li
Tian Yu Liu
Yulong Liu
M. Zhang
Jinchen Zhu
Ling Zheng
Shizhuang Weng
ArXivPDFHTML
Abstract

Transformers have achieved remarkable results in single-image super-resolution (SR). However, the challenge of balancing model performance and complexity has hindered their application in lightweight SR (LSR). To tackle this challenge, we propose an efficient striped window transformer (ESWT). We revisit the normalization layer in the transformer and design a concise and efficient transformer structure to build the ESWT. Furthermore, we introduce a striped window mechanism to model long-term dependencies more efficiently. To fully exploit the potential of the ESWT, we propose a novel flexible window training strategy that can improve the performance of the ESWT without additional cost. Extensive experiments show that ESWT outperforms state-of-the-art LSR transformers, and achieves a better trade-off between model performance and complexity. The ESWT requires fewer parameters, incurs faster inference, smaller FLOPs, and less memory consumption, making it a promising solution for LSR.

View on arXiv
Comments on this paper