ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2301.09231
19
13

GP-NAS-ensemble: a model for NAS Performance Prediction

23 January 2023
Kunlong Chen
Liu Yang
Yitian Chen
Kunjin Chen
Yidan Xu
Lujun Li
ArXivPDFHTML
Abstract

It is of great significance to estimate the performance of a given model architecture without training in the application of Neural Architecture Search (NAS) as it may take a lot of time to evaluate the performance of an architecture. In this paper, a novel NAS framework called GP-NAS-ensemble is proposed to predict the performance of a neural network architecture with a small training dataset. We make several improvements on the GP-NAS model to make it share the advantage of ensemble learning methods. Our method ranks second in the CVPR2022 second lightweight NAS challenge performance prediction track.

View on arXiv
Comments on this paper