ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2301.07854
14
1

FE-TCM: Filter-Enhanced Transformer Click Model for Web Search

19 January 2023
Yingfei Wang
Jianping Liu
Jian Wang
Xiaofeng Wang
Meng Wang
Xintao Chu
ArXivPDFHTML
Abstract

Constructing click models and extracting implicit relevance feedback information from the interaction between users and search engines are very important to improve the ranking of search results. Using neural network to model users' click behaviors has become one of the effective methods to construct click models. In this paper, We use Transformer as the backbone network of feature extraction, add filter layer innovatively, and propose a new Filter-Enhanced Transformer Click Model (FE-TCM) for web search. Firstly, in order to reduce the influence of noise on user behavior data, we use the learnable filters to filter log noise. Secondly, following the examination hypothesis, we model the attraction estimator and examination predictor respectively to output the attractiveness scores and examination probabilities. A novel transformer model is used to learn the deeper representation among different features. Finally, we apply the combination functions to integrate attractiveness scores and examination probabilities into the click prediction. From our experiments on two real-world session datasets, it is proved that FE-TCM outperforms the existing click models for the click prediction.

View on arXiv
Comments on this paper