ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2301.07513
23
0

A Bayesian Nonparametric Stochastic Block Model for Directed Acyclic Graphs

18 January 2023
Clement D Lee
Marco Battiston
ArXivPDFHTML
Abstract

Directed acyclic graphs (DAGs) are commonly used in statistics as models, such as Bayesian networks. In this article, we propose a stochastic block model for data that are DAGs. Two main features of this model are the incorporation of the topological ordering of nodes as a parameter, and the use of the Pitman-Yor process as the prior for the allocation vector. In the resultant Markov chain Monte Carlo sampler, not only are the topological ordering and the number of groups inferred, but a model selection step is also included to select between the two regimes of the Pitman-Yor process. The model and the sampler are applied to two citation networks.

View on arXiv
Comments on this paper