ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2301.07182
17
0

Genetic Imitation Learning by Reward Extrapolation

3 January 2023
Boyuan Zheng
Jianlong Zhou
Fang Chen
ArXivPDFHTML
Abstract

Imitation learning demonstrates remarkable performance in various domains. However, imitation learning is also constrained by many prerequisites. The research community has done intensive research to alleviate these constraints, such as adding the stochastic policy to avoid unseen states, eliminating the need for action labels, and learning from the suboptimal demonstrations. Inspired by the natural reproduction process, we proposed a method called GenIL that integrates the Genetic Algorithm with imitation learning. The involvement of the Genetic Algorithm improves the data efficiency by reproducing trajectories with various returns and assists the model in estimating more accurate and compact reward function parameters. We tested GenIL in both Atari and Mujoco domains, and the result shows that it successfully outperforms the previous extrapolation methods over extrapolation accuracy, robustness, and overall policy performance when input data is limited.

View on arXiv
Comments on this paper