ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2301.06018
35
8

CMAE-V: Contrastive Masked Autoencoders for Video Action Recognition

15 January 2023
Cheng Lu
Xiaojie Jin
Zhicheng Huang
Qibin Hou
Mingg-Ming Cheng
Jiashi Feng
ArXivPDFHTML
Abstract

Contrastive Masked Autoencoder (CMAE), as a new self-supervised framework, has shown its potential of learning expressive feature representations in visual image recognition. This work shows that CMAE also trivially generalizes well on video action recognition without modifying the architecture and the loss criterion. By directly replacing the original pixel shift with the temporal shift, our CMAE for visual action recognition, CMAE-V for short, can generate stronger feature representations than its counterpart based on pure masked autoencoders. Notably, CMAE-V, with a hybrid architecture, can achieve 82.2% and 71.6% top-1 accuracy on the Kinetics-400 and Something-something V2 datasets, respectively. We hope this report could provide some informative inspiration for future works.

View on arXiv
Comments on this paper