ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2301.05494
20
7

Multilingual Detection of Check-Worthy Claims using World Languages and Adapter Fusion

13 January 2023
Ipek Baris Schlicht
Lucie Flek
Paolo Rosso
ArXivPDFHTML
Abstract

Check-worthiness detection is the task of identifying claims, worthy to be investigated by fact-checkers. Resource scarcity for non-world languages and model learning costs remain major challenges for the creation of models supporting multilingual check-worthiness detection. This paper proposes cross-training adapters on a subset of world languages, combined by adapter fusion, to detect claims emerging globally in multiple languages. (1) With a vast number of annotators available for world languages and the storage-efficient adapter models, this approach is more cost efficient. Models can be updated more frequently and thus stay up-to-date. (2) Adapter fusion provides insights and allows for interpretation regarding the influence of each adapter model on a particular language. The proposed solution often outperformed the top multilingual approaches in our benchmark tasks.

View on arXiv
Comments on this paper