ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2301.05012
6
1

Fairly Private: Investigating The Fairness of Visual Privacy Preservation Algorithms

12 January 2023
Sophie Noiret
Siddharth Ravi
M. Kampel
Francisco Flórez-Revuelta
    PICV
ArXivPDFHTML
Abstract

As the privacy risks posed by camera surveillance and facial recognition have grown, so has the research into privacy preservation algorithms. Among these, visual privacy preservation algorithms attempt to impart bodily privacy to subjects in visuals by obfuscating privacy-sensitive areas. While disparate performances of facial recognition systems across phenotypes are the subject of much study, its counterpart, privacy preservation, is not commonly analysed from a fairness perspective. In this paper, the fairness of commonly used visual privacy preservation algorithms is investigated through the performances of facial recognition models on obfuscated images. Experiments on the PubFig dataset clearly show that the privacy protection provided is unequal across groups.

View on arXiv
Comments on this paper