ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2301.04465
16
38

Co-training with High-Confidence Pseudo Labels for Semi-supervised Medical Image Segmentation

11 January 2023
Zhiqiang Shen
Peng Cao
Hua Yang
Xiaoli Liu
Jinzhu Yang
Osmar R. Zaiane
ArXivPDFHTML
Abstract

Consistency regularization and pseudo labeling-based semi-supervised methods perform co-training using the pseudo labels from multi-view inputs. However, such co-training models tend to converge early to a consensus, degenerating to the self-training ones, and produce low-confidence pseudo labels from the perturbed inputs during training. To address these issues, we propose an Uncertainty-guided Collaborative Mean-Teacher (UCMT) for semi-supervised semantic segmentation with the high-confidence pseudo labels. Concretely, UCMT consists of two main components: 1) collaborative mean-teacher (CMT) for encouraging model disagreement and performing co-training between the sub-networks, and 2) uncertainty-guided region mix (UMIX) for manipulating the input images according to the uncertainty maps of CMT and facilitating CMT to produce high-confidence pseudo labels. Combining the strengths of UMIX with CMT, UCMT can retain model disagreement and enhance the quality of pseudo labels for the co-training segmentation. Extensive experiments on four public medical image datasets including 2D and 3D modalities demonstrate the superiority of UCMT over the state-of-the-art. Code is available at: https://github.com/Senyh/UCMT.

View on arXiv
Comments on this paper