ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2301.02615
11
1

Silent Killer: A Stealthy, Clean-Label, Black-Box Backdoor Attack

5 January 2023
Tzvi Lederer
Gallil Maimon
Lior Rokach
    AAML
ArXivPDFHTML
Abstract

Backdoor poisoning attacks pose a well-known risk to neural networks. However, most studies have focused on lenient threat models. We introduce Silent Killer, a novel attack that operates in clean-label, black-box settings, uses a stealthy poison and trigger and outperforms existing methods. We investigate the use of universal adversarial perturbations as triggers in clean-label attacks, following the success of such approaches under poison-label settings. We analyze the success of a naive adaptation and find that gradient alignment for crafting the poison is required to ensure high success rates. We conduct thorough experiments on MNIST, CIFAR10, and a reduced version of ImageNet and achieve state-of-the-art results.

View on arXiv
Comments on this paper