22
0

Topics as Entity Clusters: Entity-based Topics from Language Models and Graph Neural Networks

Abstract

Topic models aim to reveal the latent structure behind a corpus, typically conducted over a bag-of-words representation of documents. In the context of topic modeling, most vocabulary is either irrelevant for uncovering underlying topics or contains strong relationships with relevant concepts, impacting the interpretability of these topics. Furthermore, their limited expressiveness and dependency on language demand considerable computation resources. Hence, we propose a novel approach for cluster-based topic modeling that employs conceptual entities. Entities are language-agnostic representations of real-world concepts rich in relational information. To this end, we extract vector representations of entities from (i) an encyclopedic corpus using a language model; and (ii) a knowledge base using a graph neural network. We demonstrate that our approach consistently outperforms other state-of-the-art topic models across coherency metrics and find that the explicit knowledge encoded in the graph-based embeddings provides more coherent topics than the implicit knowledge encoded with the contextualized embeddings of language models.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.