ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2301.01382
23
7

Task-sequencing Simulator: Integrated Machine Learning to Execution Simulation for Robot Manipulation

3 January 2023
Kazuhiro Sasabuchi
Daichi Saito
Atsushi Kanehira
Naoki Wake
Jun Takamatsu
Katsushi Ikeuchi
ArXivPDFHTML
Abstract

A task-sequencing simulator in robotics manipulation to integrate simulation-for-learning and simulation-for-execution is introduced. Unlike existing machine-learning simulation where a non-decomposed simulation is used to simulate a training scenario, the task-sequencing simulator runs a composed simulation using building blocks. This way, the simulation-for-learning is structured similarly to a multi-step simulation-for-execution. To compose both learning and execution scenarios, a unified trainable-and-composable description of blocks called a concept model is proposed and used. Using the simulator design and concept models, a reusable simulator for learning different tasks, a common-ground system for learning-to-execution, simulation-to-real is achieved and shown.

View on arXiv
Comments on this paper